631 research outputs found

    Exercises in exact quantization

    Full text link
    The formalism of exact 1D quantization is reviewed in detail and applied to the spectral study of three concrete Schr\"odinger Hamiltonians [-\d^2/\d q^2 + V(q)]^\pm on the half-line {q>0}\{q>0\}, with a Dirichlet (-) or Neumann (+) condition at q=0. Emphasis is put on the analytical investigation of the spectral determinants and spectral zeta functions with respect to singular perturbation parameters. We first discuss the homogeneous potential V(q)=qNV(q)=q^N as N→+∞N \to +\inftyvs its (solvable) N=∞N=\infty limit (an infinite square well): useful distinctions are established between regular and singular behaviours of spectral quantities; various identities among the square-well spectral functions are unraveled as limits of finite-N properties. The second model is the quartic anharmonic oscillator: its zero-energy spectral determinants \det(-\d^2/\d q^2 + q^4 + v q^2)^\pm are explicitly analyzed in detail, revealing many special values, algebraic identities between Taylor coefficients, and functional equations of a quartic type coupled to asymptotic v→+∞v \to +\infty properties of Airy type. The third study addresses the potentials V(q)=qN+vqN/2−1V(q)=q^N+v q^{N/2-1} of even degree: their zero-energy spectral determinants prove computable in closed form, and the generalized eigenvalue problems with v as spectral variable admit exact quantization formulae which are perfect extensions of the harmonic oscillator case (corresponding to N=2); these results probably reflect the presence of supersymmetric potentials in the family above.Comment: latex txt.tex, 2 files, 34 pages [SPhT-T00/078]; v2: corrections and updates as indicated by footnote

    Nitrogen uptake and the importance of internal nitrogen loading in Lake Balaton

    Get PDF
    1. The importance of various forms of nitrogen to the nitrogen supply of phytoplankton has been investigated in the mesotrophic eastern and eutrophic western basin of Lake Balaton.<br /> 2. Uptake rates of ammonium, urea, nitrate and carbon were measured simultaneously. The uptake rates were determined using N-15 and C-14 methodologies, and N-2-fixation was measured using the acetylene-reduction method. The light dependence of uptake was described with an exponential saturation equation and used to calculate surface-related (areal) daily uptake. <br /> 3. The contribution of ammonium, urea and nitrate to the daily nitrogen supply of phytoplankton varied between 11 and 80%, 17 and 73% and 1 and 15%, respectively. N- 2-fixation was negligible in the eastern basin and varied between 5 and 30% in the western region of the lake. The annual external nitrogen load was only 10% of that utilized by algae.<br /> 4. The predominant process supplying nitrogen to the phytoplankton in the lake is the rapid recycling of ammonium and urea in the water column, The importance of the internal nutrient loading is emphasized

    Statistical mechanics of Floquet systems with regular and chaotic states

    Full text link
    We investigate the asymptotic state of time-periodic quantum systems with regular and chaotic Floquet states weakly coupled to a heat bath. The asymptotic occupation probabilities of these two types of states follow fundamentally different distributions. Among regular states the probability decreases from the state in the center of a regular island to the outermost state by orders of magnitude, while chaotic states have almost equal probabilities. We derive an analytical expression for the occupations of regular states of kicked systems, which depends on the winding numbers of the regular tori and the parameters temperature and driving frequency. For a constant winding number within a regular island it simplifies to Boltzmann-like weights \exp(-\betaeff \Ereg_m), similar to time-independent systems. For this we introduce the regular energies \Ereg_m of the quantizing tori and an effective winding-number-dependent temperature 1/\betaeff, different from the actual bath temperature. Furthermore, the occupations of other typical Floquet states in a mixed phase space are studied, i.e. regular states on nonlinear resonances, beach states, and hierarchical states, giving rise to distinct features in the occupation distribution. Avoided crossings involving a regular state lead to drastic consequences for the entire set of occupations. We introduce a simplified rate model whose analytical solutions describe the occupations quite accurately.Comment: 18 pages, 11 figure

    A nonextensive entropy approach to solar wind intermittency

    Full text link
    The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These characteristics were hitherto described in the context of the log-normal, the Castaing distribution or the shell model. On the other hand, a possible explanation for nonlocality in turbulence is offered within the context of nonextensive entropy generalization by a recently introduced bi-kappa distribution, generating through a convolution of a negative-kappa core and positive-kappa halo pronounced non-Gaussian structures. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time lags and compared with the characteristics of the theoretical bi-kappa functional, well representing the overall scale dependence of the spatial solar wind intermittency. The observed PDF characteristics for increased spatial scales are manifest in the theoretical distribution functional by enhancing the only tuning parameter κ\kappa, measuring the degree of nonextensivity where the large-scale Gaussian is approached for κ→∞\kappa \to \infty. The nonextensive approach assures for experimental studies of solar wind intermittency independence from influence of a priori model assumptions. It is argued that the intermittency of the turbulent fluctuations should be related physically to the nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.

    Universality in the flooding of regular islands by chaotic states

    Full text link
    We investigate the structure of eigenstates in systems with a mixed phase space in terms of their projection onto individual regular tori. Depending on dynamical tunneling rates and the Heisenberg time, regular states disappear and chaotic states flood the regular tori. For a quantitative understanding we introduce a random matrix model. The resulting statistical properties of eigenstates as a function of an effective coupling strength are in very good agreement with numerical results for a kicked system. We discuss the implications of these results for the applicability of the semiclassical eigenfunction hypothesis.Comment: 11 pages, 12 figure

    Apparatus description and data analysis of a radiometric technique for measurements of spectral and total normal emittance

    Get PDF
    The development of a radiometric technique for determining the spectral and total normal emittance of materials heated to temperatures of 800, 1100, and 1300 K by direct comparison with National Bureau of Standards (NBS) reference specimens is discussed. Emittances are measured over the spectral range of 1 to 15 microns and are statistically compared with NBS reference specimens. Results are included for NBS reference specimens, Rene 41, alundum, zirconia, AISI type 321 stainless steel, nickel 201, and a space-shuttle reusable surface insulation

    Scar Intensity Statistics in the Position Representation

    Full text link
    We obtain general predictions for the distribution of wave function intensities in position space on the periodic orbits of chaotic ballistic systems. The expressions depend on effective system size N, instability exponent lambda of the periodic orbit, and proximity to a focal point of the orbit. Limiting expressions are obtained that include the asymptotic probability distribution of rare high-intensity events and a perturbative formula valid in the limit of weak scarring. For finite system sizes, a single scaling variable lambda N describes deviations from the semiclassical N -> infinity limit.Comment: To appear in Phys. Rev. E, 10 pages, including 4 figure

    Robustness of adiabatic passage trough a quantum phase transition

    Get PDF
    We analyze the crossing of a quantum critical point based on exact results for the transverse XY model. In dependence of the change rate of the driving field, the evolution of the ground state is studied while the transverse magnetic field is tuned through the critical point with a linear ramping. The excitation probability is obtained exactly and is compared to previous studies and to the Landau-Zener formula, a long time solution for non-adiabatic transitions in two-level systems. The exact time dependence of the excitations density in the system allows to identify the adiabatic and diabatic regions during the sweep and to study the mesoscopic fluctuations of the excitations. The effect of white noise is investigated, where the critical point transmutes into a non-hermitian ``degenerate region''. Besides an overall increase of the excitations during and at the end of the sweep, the most destructive effect of the noise is the decay of the state purity that is enhanced by the passage through the degenerate region.Comment: 16 pages, 15 figure
    • …
    corecore